Potassium (K)

Potassium is a chemical element with symbol K (derived from Neo-Latin kalium) and atomic number 19. Elemental potassium is a soft silvery-white alkali metal that oxidizes rapidly in air and is very reactive with water, generating sufficient heat to ignite the hydrogen emitted in the reaction and burning with a lilac flame. Naturally occurring potassium is composed of three isotopes, one of which, 40K, is radioactive. Traces (0.012%) of this isotope are found in all potassium making it the most common radioactive element in the human body and in many biological materials, as well as in common building substances such as concrete.

 

Because potassium and sodium are chemically very similar, their salts were not at first differentiated. The existence of multiple elements in their salts was suspected in 1702, and this was proven in 1807 when potassium and sodium were individually isolated from different salts by electrolysis. Potassium in nature occurs only in ionic salts. As such, it is found dissolved in seawater (which is 0.04% potassium by weight), and is part of many minerals.


Most industrial chemical applications of potassium employ the relatively high solubility in water of potassium compounds, such as potassium soaps. Potassium metal has only a few special applications, being replaced in most chemical reactions with sodium metal.

Related Images:

Micronutrients

Boron (B)

  • Helps in the use of nutrients and regulates other nutrients. 
  • Aids production of sugar and carbohydrates. 
  • Essential for seed and fruit development. 
  • Sources of boron are organic matter and borax

Copper (Cu)

  • Important for reproductive growth.
  • Aids in root metabolism and helps in the utilization of proteins. 

Chloride (Cl)

  • Aids plant metabolism. 
  • Chloride is found in the soil. 

Iron (Fe)

  • Essential for formation of chlorophyll.
  • Sources of iron are the soil, iron sulfate, iron

    Manganese (Mn)

Related Images:

Macronutrients

Micronutrients are those elements essential for plant growth which are needed in only very small (micro) quantities . These elements are sometimes called minor elements or trace elements, but use of the term micronutrient is encouraged by the American Society of Agronomy and the Soil Science Society of America. The micronutrients are boron (B), copper (Cu), iron (Fe), chloride (Cl), manganese (Mn), molybdenum (Mo) and zinc (Zn). Recycling organic matter such as grass clippings and tree leaves is an excellent way of providing micronutrients (as well as macronutrients) to growing plants.

Nitrogen (N)

  • Nitrogen is a part of all living cells and is a necessary part of all proteins, enzymes and metabolic processes involved in the synthesis and transfer of energy.
  • Nitrogen is a part of chlorophyll, the green pigment of the plant that is responsible for photosynthesis.
  • Helps plants with rapid growth, increasing seed and fruit production and improving the quality of leaf and forage crops.
  • Nitrogen often comes from fertilizer application and from the air (legumes get their N from the atmosphere, water or rainfall contributes very little nitrogen)

Phosphorus (P)

  • Like nitrogen, phosphorus (P) is an essential part of the process of photosynthesis.
  • Involved in the formation of all oils, sugars, starches, etc.
  • Helps with the transformation of solar energy into chemical energy; proper plant maturation; withstanding stress.
  • Effects rapid growth.
  • Encourages blooming and root growth.
  • Phosphorus often comes from fertilizer, bone meal, and superphosphate.

Potassium (K)

  • Potassium is absorbed by plants in larger amounts than any other mineral element except nitrogen and, in some cases, calcium.
  • Helps in the building of protein, photosynthesis, fruit quality and reduction of diseases.
  • Potassium is supplied to plants by soil minerals, organic materials, and fertilizer.

Calcium (Ca)

  • Calcium, an essential part of plant cell wall structure, provides for normal transport and retention of other elements as well as strength in the plant. It is also thought to counteract the effect of alkali salts and organic acids within a plant.
  • Sources of calcium are dolomitic lime, gypsum, and superphosphate.

Magnesium (Mg)

  • Magnesium is part of the chlorophyll in all green plants and essential for photosynthesis. It also helps activate many plant enzymes needed for growth.
  • Soil minerals, organic material, fertilizers, and dolomitic limestone are sources of magnesium for plants.

Sulfur (S)

  • Essential plant food for production of protein.
  • Promotes activity and development of enzymes and vitamins.
  • Helps in chlorophyll formation.
  • Improves root growth and seed production.
  • Helps with vigorous plant growth and resistance to cold.
  • Sulfur may be supplied to the soil from rainwater. It is also added in some fertilizers as an impurity, especially the lower grade fertilizers. The use of gypsum also increases soil sulfur levels.

Related Images:

Beetles – Pest

Beatles eat plumeria leaves and flowers at night, usually during the month of May/June.  

May Beetles
Phyllophaga spp., Scarabaeidae, COLEOPTERA

DESCRIPTION

Adult — Many species of May beetles (also known as June beetles) occur in any given area. They are shiny, robust insects, reddish-brown to black in color. Oblong in shape, they reach a length of 20 to 25 mm.

Egg — The eggs are pearly white and oblong. Each one, initially about 2.5 mm long and 1.5 mm wide, becomes slightly larger as the larva inside grows.

Larva — Commonly called white grubs, the larvae are white and C-shaped, with a distinct brown head. Young larvae are about 5 mm long, but attain a length of about 25 mm. Two rows of hairs on the underside of the last abdominal segment distinguish true white grubs from similar grubs.

Pupa — The oval, brownish pupae occur within earthen cases.

BIOLOGY

Distribution — More than 200 species of May beetles occur throughout North America. Therefore, a single species population is seldom found. In North Carolina they are most numerous from the Piedmont to the coast.

Host Plants — Although oaks are the favorite food source, adult May beetles also feed on the foliage of many other trees. Larvae prefer lespedeza, sod and corn, but they too have additional host foods which include lawn grasses and nursery plantings.

Damage — Both larvae and adults are destructive. The adults are defoliators, chewing the leaves of various hardwood trees. The grubs feed on and injure the root systems of grasses and other plants. Heavily infested turf can often be rolled up like a carpet, exposing the white grubs.

Life History — May beetles have a 2 or 3 year life cycle, depending upon the species. They overwinter in the soil as larvae in two distinct sizes and as adults that have never flown. In the spring, the adults emerge from the ground in the evening, feed on tree leaves, and mate during the night. They return to some sheltered site in the morning. Females then enter the ground to deposit about 50 eggs in earthen balls. The egg-laying period lasts a couple of weeks. In 3 to 4 weeks, grubs hatch from the eggs and feed on dead organic matter, later moving to the roots of plants. The larvae molt twice, the second and third instars being the overwintering forms. In late August, the second and third instars burrow over 1 meter deep into the ground to hibernate. The larvae do the most damage during the second year. In early spring, third instar larvae construct earthen cells in which they pupate. Adult beetles emerge from pupal cases in late summer, but do not leave the ground; instead, they overwinter there and emerge the next spring.

CONTROL

Sections of turf approximately 929 sq cm (1 sq ft) and 5 to 10 cm (2 to 4 in) deep should be examined for May beetle grubs. On golf fairways, 10 to 12 samples of this size should be taken. If examination reveals an average of three grubs per 929 sq cm (roughly 1 sq ft), treatment is probably necessary.

For specific chemical control recommendations, consult the state agricultural extension service.

Related Images:

Leaf Miner – Pest

Any insect which lays its eggs in the spongy layer between the upper and lower surfaces of leaves is known as a leaf miner. Larvae develop between the leaf surfaces and tunnel or ‘mine’ out the spongy middle layer as they grow, giving leaves a spotty and brownish appearance. The four stages of its development are: egg, larva (leaf miner), pupa, and adult (a small fly).

Control

Although the mines may be considered to be unsightly, this pest can be tolerated as it has little real impact on the health and vigour of a holly. Leaves with mines may turn yellow and drop in early summer but this is the natural shedding of older leaves and not due to the pest. Pinch the leaves of small trees to kill the leaf miner. Insecticides are unlikely to be effective as the thick glossy surface of holly leaves means that sprays run off the foliage and do not penetrate to where the grubs are feeding. On small specimen plants it is feasible to remove mined leaves but not if this would result in significant defoliation. When the leaves are fully formed in late April or early May, this is your first opportunity to use insecticides. Managing leaf miners at this time can significantly reduce the chance of a problem later in the season. In June, if populations are severe, time your insecticide application to coincide with the second period of adult flight. Once you’ve noticed that the larvae have left the leaf, start to look for adults emerging two to three weeks later. Apply insecticides when most of the adults have emerged. Using insecticides to manage late season generations is generally not worth it. If late season problems are severe, consider an insecticide application next spring.

Related Images:

Nematodes – Pest

Microscopic, eel-like roundworms. The most troublesome species in the garden are those that live and feed within plant roots most of their lives and those that live freely in the soil and feed on plant roots.

Root knot nematodes usually cause distinctive swellings, called galls, on the roots of affected plants. Infestations of these nematodes are fairly easy to recognize by digging up a few plants with symptoms, washing or gently tapping the soil from the roots, and examining the roots for galls. The nematodes feed and develop within the galls, which may grow to as large as 1-inch in diameter on some plants but are usually much smaller. The water- and nutrient-conducting abilities of the roots are damaged by the formation of the galls. Galls may crack or split open, especially on the roots of vegetable plants, allowing the entry of soilborne, disease-causing microorganisms.

Control

Management of nematodes is difficult. The most reliable practices are preventive, including sanitation and choice of plant varieties. Existing infestations can be reduced through fallowing, crop rotation, or soil solarization. However, these methods reduce nematodes primarily in the top foot or so of the soil, so are effective only for about a year. They are suitable primarily for annual plants or to help young woody plants establish. Once an area or crop is infested, try to minimize damage by adjusting planting and harvesting dates and irrigation or by the use of soil amendments.

Nematodes are usually introduced into new areas with infested soil or plants. Prevent nematodes from entering your garden by using only nematode-free plants purchased from reliable nurseries. To prevent the spread of nematodes, avoid moving plants and soil from infested parts of the garden. Do not allow irrigation water from around infested plants to run off, as this spreads nematodes. Nematodes may be present in soil attached to tools and equipment used elsewhere, so clean tools thoroughly before using them in your garden.

Related Images:

Mealybug – Pest

Mealybugs are part of the insect families collectively known as scale insects. They are soft-bodied, without the outer shell associated with insects in the other scale insect families. Instead, mealybugs are usually covered with a white waxy powder

Mealybugs have sucking mouthparts. Feeding weakens and stunts plants, causes leaf distortion, yellowing, and even total leaf loss. In some cases, plants can be killed. Mealybugs also produce large amounts of honeydew (similar to that produced by whiteflies and aphids), which can coat plants and surrounding surfaces with a sticky layer. A black fungus commonly known as “sooty mold” grows on the honeydew. The presence of honeydew and sooty fungus is one way to detect infestations of these insects.

Life Cycle. The citrus mealybug female can produce about 600 eggs, which are produced in cottony structures called ovisacs. Eggs may be produced with or without males. The eggs hatch in less than 10 days into small nymphs called crawlers. The crawlers move about the plants and locate feeding sites. Once the insects settle, there is not much movement. Under favorable conditions, there may be six generations per year. In reality, generations overlap, so all developmental stages will be present.

Control

Many chemical insecticides list mealybugs.

Non-chemical Control:

– Rubbing Alcohol Spray: Mix 1 to 2 cups alcohol per quart of water. Using undiluted alcohol as a spray is very risky for plants. Since alcohol can damage plants always test your spray mix on a few leaves of plants first. If the spray kills the pests and no leaf damage shows within the next 2 or 3 days, go ahead and spray further, using exactly the same ingredients and proportions you tested. If an infestation is well-established, it will be necessary to make a series of applications, at 10 to 14 day intervals, for mealybug control.

– Insecticidal soap spray according to the dilution on the label but substitute alcohol for half of the water required.

– Horticultural Oil and Insecticidal Soap Sprays: Are effective non-chemical controls for mealy bugs and other soft-bodied pests. Oil sprays suffocate the insects and can aid in controlling scale crawlers and eggs, while soap sprays cause the insects cell membranes to rupture effectively causing it to desiccate.

Related Images:

Snails and Slugs – Pest

Snails and slugs

– move by gliding along on a muscular “foot.” This muscle constantly secretes mucus, which later dries to form the silvery “slime trail” that signals the presence of either pest. Slugs and snails are hermaphrodites, so all have the potential to lay eggs. Adult brown garden snails lay about 80 spherical, pearly white eggs at a time into a hole in the topsoil. They may lay eggs up to six times a year. It takes about 2 years for snails to mature. Slugs reach maturity after about 3 to 6 months, depending on species, and lay clear oval to round eggs in batches of 3 to 40 under leaves, in soil cracks, and in other protected areas.

Snails and slugs are most active at night and on cloudy or foggy days. On sunny days they seek hiding places out of the heat and bright light; often the only clues to their presence are their silvery trails and plant damage. In mild-winter areas such as southern coastal locations, young snails and slugs can be active throughout the year.

During cold weather, snails and slugs hibernate in the topsoil. During hot, dry periods or when it is cold, snails seal themselves off with a parchmentlike membrane and often attach themselves to tree trunks, fences, or walls.

Snails and slugs feed on a variety of living plants as well as on decaying plant matter. On plants they chew irregular holes with smooth edges in leaves and flowers and can clip succulent plant parts. They can also chew fruit and young plant bark. Because they prefer succulent foliage or flowers, they are primarily pests of seedlings and herbaceous plants, but they are also serious pests of ripening fruits, such as strawberries, artichokes, and tomatoes, that are close to the ground.

Eliminate and Control

A good snail and slug management program relies on a combination of methods. The first step is to eliminate, to the extent possible, all places where snails or slugs can hide during the day. Boards, stones, debris, weedy areas around tree trunks, leafy branches growing close to the ground, and dense ground covers such as ivy are ideal sheltering spots. There will be shelters that are not possible to eliminate—e.g., low ledges on fences, the undersides of wooden decks, and water meter boxes. Make a regular practice of trapping and removing snails and slugs in these areas. Also, locate vegetable gardens or susceptible plants as far away as possible from these areas. Reducing hiding places allows fewer snails and slugs to survive. The survivors congregate in the remaining shelters, where they can more easily be located and removed. Switching from sprinkler irrigation to drip irrigation will reduce humidity and moist surfaces, making the habitat less favorable for these pests. Choose snail-proof plants for areas where snails and slugs are dense. Copper barriers can be useful for protecting especially susceptible plants. Though baits can be part of a management program for snails and slugs, by themselves they don’t provide adequate control in gardens that contain plenty of shelter, food, and moisture.

Handpicking can be very effective if done thoroughly on a regular basis. Snails and slugs can be trapped under boards or flower pots positioned throughout the garden and landscape. Several types of barriers will keep snails and slugs out of planting beds. The easiest to maintain are those made with copper flashing and screen. Copper barriers are effective because it is thought that the copper reacts with the slime that the snail or slug secretes, causing a flow of electricity. Vertical copper screens can be erected around planting beds. The screen should be 6 inches tall and buried several inches below the soil to prevent slugs from crawling through the soil beneath the barrier. Snails and slugs have many natural enemies, including ground beetles, pathogens, snakes, toads, turtles, and birds, but most are rarely effective enough to provide satisfactory control in the garden.

Snail and slug baits can be effective when used properly in conjunction with a cultural program incorporating the other methods discussed above. However, baits alone will not effectively control snails or slugs. Several types of snail and slug bait products are available. Baits containing the active ingredient metaldehyde are most common. Metaldehyde baits are particularly poisonous to dogs and cats, and the pelleted form is especially attractive to dogs. Metaldehyde snail baits should not be used where children and pets cannot be kept away from them. Some metaldehyde products are formulated with carbaryl, partly to increase the spectrum of pests controlled to include soil and debris-dwelling insects, spiders, and sowbugs. However, carbaryl is toxic to soil-inhabiting beneficials like ground beetles and earthworms and should be avoided if snail and slug management is all that is required. Metaldehyde baits containing 4% metaldehyde are significantly more effective than those products containing only 2% metaldehyde; however, they are also more toxic to dogs and wildlife. Most currently available 4% products are formulated for use in enclosed bait stations to minimize their hazard.

Avoid getting metaldehyde bait on plants, especially vegetables. Baits containing only metaldehyde are most reliable when temperatures are warm or following a rain when snails and slugs are active. Metaldehyde does not kill snails and slugs directly unless they eat a substantial amount; rather, it stimulates their mucous-producing cells to overproduce mucous in an attempt to detoxify the bait. The cells eventually fail and the snail dies. When it is sunny or hot, they die from desiccation. If baiting is followed by cool and wet weather, they may recover if they ingest a sublethal dose. Do not water heavily for at least 3 or 4 days after bait placement; watering will reduce effectiveness and snails may recover from metaldehyde poisoning if high moisture conditions occur. Most metaldehyde baits break down rapidly when exposed to sunlight; however, some paste or bullet formulations (such as Deadline) hold up somewhat longer under conditions of sunlight and moisture.

A recently registered snail and slug bait, iron phosphate (available under many trade names including Sluggo and Escar-Go), has the advantage of being safe for use around domestic animals, children, birds, fish, and other wildlife and is a good choice for a garden IPM program. Ingestion of the iron phosphate bait, even in small amounts, will cause snails and slugs to cease feeding, although it may take several days for the snails to die. Iron phosphate bait can be scattered on lawns or on the soil around any vegetables, ornamentals, or fruit trees to be protected. Iron phosphate baits may be more effective against snails than slugs.

Related Images:

Plumeria – Frangipani Caterpillar

The caterpillars are the larvae of the frangipani moth, also known as Pseudosphinx tetrio. At up to six inches in length, the plumeria caterpillar is an impressive sight. It’s bright coloration warns birds and other predators that it is not a very tasty meal. The caterpillar feeds on the plumeria tree, which produces a poisonous sap. The caterpillar is not harmed by eating the sap and it actually makes itself toxic and foul tasting to predators in the process. After the caterpillar gorges itself, it drops and buries beneath the ground to metamorphosize into a large hawk moth. (photo by Hetty Ford)

They feed primarily on the plumeria tree and plant and occasionally Allamanda and Desert Rose. They do not damage crops or ornamental flowers. As to fears of pets like dogs and cats playing with and biting the caterpillars, the insects’ coloring suggests to predators not to eat them as they may be poisonous, and this is understood. I would not recommend anybody eating them or playing with them because they can give you a little nip occasionally. Their destructive nature is evident when plumeria trees became infested with the caterpillars and as little as one week the tree is striped of it leaves, seedpods and flowers. And at the end of it all, they turn into very large, very unattractive brown moths which invade your house at night.

You have three options to deal with these caterpillars. You can:

  1. Do nothing. After the caterpillars have defoliated them, the plumeria plants will recover and produce new leaves again.
  2. Remove the caterpillars from the plants and destroy them.
  3. Spray the plants with an insecticide. You can use a systemic insecticide such as Perfekthion®. This insecticide penetrates the leaves so that when the caterpillars feed on them they will be killed. If you want to use an organic insecticide, use NewBt® or Dipel Pro®. If spraying the organic insecticides, it was best to do so in the late evening, after 4:30 p.m., because the insects were sensitive to ultraviolet light. The caterpillars die two to three hours after feeding on the treated leaves. 

Related Images:

Nutrients

Sixteen chemical elements are known to be important to a plant’s growth and survival. The sixteen chemical elements are divided into two main groups: non-mineral and  mineral.  

Non-Mineral Nutrients

  • The Non-Mineral Nutrients are hydrogen (H), oxygen (O), & carbon (C).
  • These nutrients are found in the air and water. 
  • In a process called photosynthesis, plants use energy from the sun to change carbon dioxide (CO2 – carbon and oxygen) and water (H2O- hydrogen and oxygen) into starches and sugars. These starches and sugars are the plant’s food. 
  • Photosynthesis means “making things with light”.
  • Since plants get carbon, hydrogen, and oxygen from the air and water, there is little farmers and gardeners can do to control  how much of these nutrients a plant can use.

Mineral Nutrients

The 13 mineral nutrients, which come from the soil, are dissolved in water and absorbed through a plant’s roots. There are not always enough of these nutrients in the soil for a plant to grow healthy. This is why many plumeria growers and gardeners use fertilizers to add the nutrients to the soil. The mineral nutrients are divided into two groups:
macronutrients and micronutrients.  

Macronutrients 

Macronutrients can be broken into two more groups: primary and secondary nutrients. 

The primary nutrients are nitrogen (N), phosphorus (P), and potassium (K). These major nutrients usually are lacking from the soil first because plants use large amounts for their growth and survival.

The secondary nutrients are calcium (Ca), magnesium (Mg), and sulfur (S). There are usually enough of these nutrients in the soil so fertilization is not always needed. Also, large amounts of Calcium and Magnesium are added when lime is applied to acidic soils. Sulfur is usually found in sufficient amounts from the slow decomposition of soil organic matter, an important reason for not throwing out grass clippings and leaves.

Micronutrients

Micronutrients are those elements essential for plant growth which are needed in only very small (micro) quantities . These elements are sometimes called minor elements or trace elements, but use of the term micronutrient is encouraged by the American Society of Agronomy and the Soil Science Society of America. The micronutrients are boron (B), copper (Cu), iron (Fe), chloride (Cl), manganese (Mn), molybdenum (Mo) and zinc (Zn). Recycling organic matter such as grass clippings and tree leaves is an excellent way of providing micronutrients (as well as macronutrients) to growing plants.

Soil

In general, most plants grow by absorbing nutrients from the soil. Their ability to do this depends on the nature of the soil. Depending on its location, a soil contains some combination of sand, silt, clay, and organic matter. The makeup of a soil (soil texture) and its acidity (pH) determine the extent to which nutrients are available to plants.

Soil Texture 

(the amount of sand, silt, clay, and organic matter in the soil)

Soil texture affects how well nutrients and water are retained in the soil. Clays and organic soils hold nutrients and water much better than sandy soils. As water drains from sandy soils, it often carries nutrients along with it. This condition is called leaching. When nutrients leach into the soil, they are not available for plants to use.

An ideal soil contains equivalent portions of sand, silt, clay, and organic matter. Soils across North Carolina vary in their texture and nutrient content, which makes some soils more productive than others. Sometimes, the nutrients that plants need occur naturally in the soil. Othertimes, they must be added to the soil as lime or fertilizer.

Soil pH

(a measure of the acidity or alkalinity of the soil) Soil pH is one of the most important soil properties that affects the availability of nutrients.

  • Macronutrients tend to be less available in soils with low pH.
  • Micronutrients tend to be less available in soils with high pH.

Lime – can be added to the soil to make it less sour (acid) and also supplies calcium and magnesium for plants to use. Lime also raises the pH to the desired range of 6.0 to 6.5.

In this pH range, nutrients are more readily available to plants, and microbial populations in the soil increase. Microbes convert nitrogen and sulfur to forms that plants can use. Lime also enhances the physical properties of the soil that promote water and air movement.

It is a good idea to have your soil tested. If you do, you will get a report that explains how much lime and fertilizer your crop needs.

Macronutrients

Nitrogen (N)

  • Nitrogen is a part of all living cells and is a necessary part of all proteins, enzymes and metabolic processes involved in the synthesis and transfer of energy.
  • Nitrogen is a part of chlorophyll, the green pigment of the plant that is responsible for photosynthesis. 
  • Helps plants with rapid growth, increasing seed and fruit production and improving the quality of leaf and forage crops. 
  • Nitrogen often comes from fertilizer application and from the air (legumes get their N from the atmosphere, water or rainfall contributes very little nitrogen)

Phosphorus (P)

  • Like nitrogen, phosphorus (P) is an essential part of the process of photosynthesis. 
  • Involved in the formation of all oils, sugars, starches, etc.
  • Helps with the transformation of solar energy into chemical energy; proper plant maturation; withstanding stress.
  • Effects rapid growth.
  • Encourages blooming and root growth.
  • Phosphorus often comes from fertilizer, bone meal, and superphosphate. 

Potassium (K)

  • Potassium is absorbed by plants in larger amounts than any other mineral element except nitrogen and, in some cases, calcium. 
  • Helps in the building of protein, photosynthesis, fruit quality and reduction of diseases.
  • Potassium is supplied to plants by soil minerals, organic materials, and fertilizer.

Calcium (Ca)

  • Calcium, an essential part of plant cell wall structure, provides for normal transport and retention of other elements as well as strength in the plant. It is also thought to counteract the effect of alkali salts and organic acids within a plant. 
  • Sources of calcium are dolomitic lime, gypsum, and superphosphate.

Magnesium (Mg)

  • Magnesium is part of the chlorophyll in all green plants and essential for photosynthesis. It also helps activate many plant enzymes needed for growth.
  • Soil minerals, organic material, fertilizers, and dolomitic limestone are sources of magnesium for plants.

Sulfur (S)

  • Essential plant food for production of protein.
  • Promotes activity and development of enzymes and vitamins.
  • Helps in chlorophyll formation.
  • Improves root growth and seed production.
  • Helps with vigorous plant growth and resistance to cold.
  • Sulfur may be supplied to the soil from rainwater. It is also added in some fertilizers as an impurity, especially the lower grade fertilizers. The use of gypsum also increases soil sulfur levels. 

Micronutrients

Boron (B)

  • Helps in the use of nutrients and regulates other nutrients. 
  • Aids production of sugar and carbohydrates. 
  • Essential for seed and fruit development. 
  • Sources of boron are organic matter and borax

Copper (Cu)

  • Important for reproductive growth.
  • Aids in root metabolism and helps in the utilization of proteins. 

Chloride (Cl)

  • Aids plant metabolism. 
  • Chloride is found in the soil. 

Iron (Fe)

  • Essential for formation of chlorophyll.
  • Sources of iron are the soil, iron sulfate, iron chelate.

Manganese (Mn)

  • Functions with enzyme systems involved in breakdown of carbohydrates, and nitrogen metabolism. 
  • Soil is a source of manganese.

Molybdenum (Mo)

  • Helps in the use of nitrogen
  • Soil is a source of molybdenum. 

Zinc (Zn)

  • Essential for the transformation of carbohydrates.
  • Regulates consumption of sugars.
  • Part of the enzyme systems which regulate plant growth. 
  • Sources of zinc are soil, zinc oxide, zinc sulfate, zinc chelate.

Related Images: