Fungus Gnats – Pest

Pests & Diseases: Fungus Gnats
The adult fungus gnat is a small black fly, about 3-4 mm in length. They are commonly seen swarming in greenhouses because they are attracted by the humidity, high temperatures and decomposing organic matter. Crop substrates offer ideal conditions for their larvae, which are white and legless, resembling small worms. They feed on organic matter and the tender parts of plants below the ground, such as roots, as well as the stems.

About the pest in brief

What are fungus gnats?
Fungus gnats (families Mycetophilidae and Sciaridae) are a common pest affecting indoor plants, especially where humidity and moisture levels are high.
What can you see?
They’re usually first noticed when the harmless adults are seen flying around house plants or gathered at a nearby window.
What can you do?
Make sure that air is circulating over the top of your soil and water your plants properly.

Biological cycle of fungus gnats

Adults live about one week and lay up to 300 eggs in rich, moist soils. Within 4-6 days tiny larvae emerge and begin feeding on plant roots during their two-week lives. The pupal stage lasts 3-4 days before young adults leave the soil and begin the next generation. The entire life cycle from egg to adult may be completed in as little as 3-4 weeks depending on the temperature. Because of their proclivity and relative short gestation period, potted plants can host each stage – egg, larvae, pupae, adult – with multiple generations at once. Because of this, remedies usually require repeated applications until there are no surviving eggs.

Fungus Gnats

Symptoms of the pest

Plant symptoms that indicate fungal gnats are sudden wilting, loss of vigor, poor growth, and yellowing of the leaves. With severe infestations, a considerable portion of the plants may be lost.

How to prevent the pest?

  • Inspect plants thoroughly prior to purchase for signs of insect pests. Turn up soil carefully near the base of the plant and look for the glossy, clear larvae. Reject any plant sending up flying gnats.
  • Fungus gnats do best in damp soils; be careful not to over water, especially during winter months when plants require less water. When potting, avoid organic material that holds water, such as algae, which may encourage egg laying.

Fungus Gnats

Solutions for controlling the pest

  • If pests are present, allow the soil to dry to a depth of one to two inches between waterings. This not only kills the larvae and inhibits the development of eggs, it also makes the soil less attractive to egg-laying females.
  • Use yellow sticky traps placed horizontally at the soil surface to capture large numbers of egg laying adults. The gnats are attracted to yellow and can easily be removed from the trap before they can lay more eggs.
  • Top-dress houseplants with beneficial nematodes to destroy the larval stage. Nematodes are microscopic round-worms that penetrate fungus gnat larvae, as well as harmful lawn and garden grubs, fleas, and other soil-borne pests (they do not harm earthworms), and then release a bacterium that consumes the pest from the inside out. The long-lasting nematodes are safe for use around pets, plants, and your family.

Related Images:

Potting Soil

The structure of potting soil determines how much water and air are available to the roots. Air is important for the roots’ oxygen supply and for the micro-organisms in the root environment.

 

infopaper-terra_text_4.jpgRoots need oxygen for growth, maintenance of the root system, and the uptake of water and nutrients. The provision of a good supply of air for fast growing plants is of vital importance for obtaining good results. A shortage of air in the early stages of cultivation leads to a poorly developed root system, which hampers growth resulting in a smaller yield.

 

Air (Oxygen) moves from the air supply outside or in the growing room, through large pores in the medium to the root surface by diffusion. The structure of the potting soil in use is dependent on the quality of the raw materials comprising the soiless potting mix. The best soiless potting media starts with virgin peat that has long-term stable structural characteristics.

 

Vertically cut or shaved peat?

 

infopaper-terra_text_5.jpgTwo different methods of harvesting can be used to exploit peat deposits: the cheapest but least efficient method consists of “shaving off” the top layer of peat. The disadvantage of this technique is that the structure is less coarse which has an undesirable effect on the air/ water relationship.

 

The second method consists of cutting the peat vertically. This is the most well known method from times past. The peat blocks that were previously used as fuel for cooking and heating houses were cut in this way. This is an expensive way of extracting peat. When peat is cut into blocks it has to be turned by hand to dry out.

 

The coarser the peat is, the better will be the balance between the water and air it contains. This ensures the roots develop better in the medium. The plants are healthier and the tendency of the mix to compress is reduced.

 

High and low peat

 

One of a potting medium’s main ingredients is peat. This is a century’s old, naturally occurring material formed from old vegetation. Peat originates from regions where climatic circumstances caused new plant material to form faster than the dead vegetation could rot. Slowly but surely this process built up a layers of organic materials that become several meters deep in some locations.

 

Two different types of peat can be differentiated: high peat and low peat. Low peat is formed in regions where groundwater levels are high and there are plenty of nutrients. Low peat typically contains a high proportion of rotten material and can have high levels of silt; sand and harmful salts which makes it an unsuitable base for a good potting soil. High peat is formed under the influence of rainwater in low nutrient regions and its principal ingredient is sphagnum moss. This is a small plant that dies off from below while continuing to grow above on its own remains. The remains of other plants are also found here; grasses, tree limbs and leaves for example.

 

infopaper-terra_text_6.jpg

Sphagnum moss

 

Sphagnum moss is particularly suitable for use as a growing substrate because it is natural, light, clean and easy to work with. It has a low nutritional content; a pH that ranges from 3.5 to 4.5 and has good water retention properties (up to 20 times its own weight). The profile of high peat in the flat peat region of Northwest Germany, contains different, distinct layers that formed in different periods.

Related Images:

Calcium (Ca) deficiency guide

 

calciumCalcium deficiency guide


Calcium occurs throughout the entire plant. It is used for many processes in the plant, however, calcium is most important for the growth process. It has a regulating effect in the cells and contributes to the stability of the plant. Plants have two transportation systems at their disposal: the xylem vessels and the sieve vessels.
 

Most nutrients can be transported via both systems, however, for calcium this is not possible. Since calcium can be transported almost exclusively via the xylem vessels, it is an element that deposes of little mobility within the plant. It is, therefore, important that a sufficient amount of calcium is always available in the root environment, so that it will be continuously available for absorption by the plant.

 

About calcium in short

What is it and what does it do?
Calcium is important to the growth process.
Has a regulating effect in the cells and contributes to the stability of the plant.
What can you see?
Yellow/brown spots, surrounded by a sharp brown outlined edge.
What can you do?
Add calcium by applying a liquid lime fertilizer such as a calcium nitrate solution.

infocourier-calcium_text_4.jpg

 

Symptoms of a deficiency

The older, larger leaves just above the bottommost ones will show the first symptoms. Yellow/brown spots occur, which are often surrounded by a sharp brown outlined edge. In addition, the growth is curbed and in serious cases the tops are smaller than normal and do not close.

 

Development of a deficiency

The symptoms often appear quickly; within one or two weeks the first spots being visible on the older leaves. The spots usually start as small, light brown specks that increase in size over time.

  • After two weeks, the older leaves show ever increasing spots and the spots also often appear at the edge of the leaves, as with a potassium deficiency or with scorch symptoms. The spots have a sharp outline and do not originate exclusively at the edge of the leaves. A lag in development is often already noticeable within a week.
  • Sometimes the growing points will wrinkle up and around the fruits you will find thin, small leaves that are not spotted.
  • The older leaves die off slowly and yellowish cloudy spots may appear around the necrotic spots. The older the leaf is, the more serious the symptoms are.
  • The flowering is also hindered and slowed down. Fruits stay small.

infocourier-calcium_text_3.jpg

Reasons for a deficiency

  • Culture on calcium fixing potting mix.
  • An excessive amount of ammonium, potassium, magnesium and/ or sodium in the root environment. The absorption is curbed mostly by ammonium and least by sodium.
  • Problems with the evaporation caused by an excessively high EC value or by excessively high or low relative humidity.

Solutions to a deficiency

  • If the EC value of the substrate or the potting mix is too high, it can be easily rinsed out with pure and if necessary acidified water.
  • Additional calcium can be applied through the nutrient solution by means of liquid lime fertilizers such as a calcium nitrate solution. With an excessively acidic potting mix, lime milk can be used to increase the pH. Use the appropriate potting mix that is not too acidic. Acid potting mix often contains insufficient amounts of lime. Good potting mix and Coco substrates are already limed.

For your information: Be careful with fertilizers containing chloride.

Related Images:

Magnesium (Ca) deficiency guide

 

magnesium-elementMagnesium deficiency guide

Magnesium is an indispensable element for – amongst others – plants. In plants, it represents a building block for chlorophyll (leaf green), and therefore, it is essential for photosynthesis. At the same time, magnesium plays an important role in the energy transfer. Together with calcium, it is also a component of tap water, influencing water hardness. Inorganic magnesium fertilizers are produced using the same bases that are used to produce potassium fertilizers.

About magnesium in short

What is it and what does it do?
Magnesium is indispensable to plants as it is essential for photosynthesis.
Represents a building block for chlorophyll.
What can you see?
Rusty brown spots.
Cloudy, vague yellow spots between the veins.
What can you do?
Spray with a 2% solution of Epsom salts every 4-5 days during about a week.

infocourier-magnes_text_4.jpg

 Symptoms of a deficiency

When there is a shortage, the leaf green in the medium-old leaves under the flowering top will be broken up, and the magnesium will be transported into the young parts of the plant. This breakdown is visible as rusty brown spots and/ or vague, cloudy, yellow spots between the veins. A slight shortage of magnesium hardly affects flowering, although the development of the flowers make the deficiency symptoms worse.

Development of a deficiency

  • Signs of a deficiency first appear around the 4th-6th week. Small, rusty brown spots and/or cloudy yellow flecks appear in the middle-aged leaves (under the top of the plant).
  • The color of the young leaves and the fruit development are not affected.
  • The size and number of rust-brown spots on the leaves increase.
  • The symptoms spread out over the whole plant, which looks ill. When the shortage becomes acute, the younger leaves are also affected and the flower production will be reduced.

Reasons for a deficiency

The magnesium deficiency can occur because uptake is inhibited because of:

  • A very wet, cold and/or acidic root environment.
  • A high quantity of potassium, ammonia and/or calcium (for instance high concentrations of calcium carbonate in drinking water, or clay potting mixes rich in calcium) in comparison with the quantity of magnesium.
  • A limited root system and heavy plant demands.
  • A high EC in the growing medium, which hinders evaporation.

infocourier-magnes_text_3.jpgSolutions to resolve a deficiency

  • When a shortage is diagnosed, the best thing to do is to spray with a 2% solution of Epsom salts.
  • Fertilization via the roots: Inorganic: Epsom salts on hydroponics or Kieserite (magnesium sulphate mono hydrate). Organic: composted turkey or cow manure.

Recovery

Rectify the possible causes: In potting mixes, when the pH is too low (less than 5), use magnesium containing calcium fertilizers. In hydro, temporarily apply a nutrient solution with a higher pH (6.5). When the EC is too high, rinse and/or temporarily feed with drinking water only.

When growing indoors, keep the root temperature between 20 – 25 degrees Celsius. A little extra magnesium is not particularly harmful. When growing in potting mixes, excessive quantities of magnesium do not appear quickly. Too much magnesium inhibits the uptake of calcium, and the plant displays general symptoms of an excess of salts; stunted growth, and dark-colored vegetation.

Related Images:

Iron deficiency guide

Iron deficiency guide

Iron is a vital element for plant life. Iron has a number of important functions in the overall metabolism of the plant and is essential for the synthesis of chlorophyll. In general, iron is poorly absorbed by the plant. It can only be sufficiently taken up by the roots in certain forms and under proper conditions.

Potting mixes seldom contain too little iron, but it is possible that forms of iron that can be absorbed by the plant are lacking. The absorbency of iron is strongly dependent on the pH. Usually, there is sufficient iron present in absorbable form in acidic potting mixes.

About iron in short

What is it and what does it do?
Iron has a number of important functions in the plant’s overall metabolism and is essential for the synthesis of chlorophyll.
What can you see?
Strong yellowing of especially the young leaves and growth shoots between the veins.
What can you do?
The best thing is to spray the plants with a watery solution of EDDHA or EDTA chelates.

infocourier-iron_text_4.jpg

Symptoms of a deficiency

Iron deficiency can occur during periods of heavy growth or high plant stress and is characterized by a strong yellowing of the young leaves and the growth shoots between the veins. This occurs chiefly because iron is not mobile in the plant. The young leaves can’t draw any iron from the older leaves. With a serious iron shortage, the older leaves and the smaller veins in the leaf can also turn yellow.

Development of a deficiency

  • Green/yellow chlorosis, from inside to the outside in the younger leaves and in the growth shoots. The veins remain mostly green.
  • Continued yellowing of the leaves to sometimes almost white. Also, large leaves turn yellow. This inhibits growth.
  • In serious cases the leaves show necrosis, and the plant’s growth and flowering are inhibited.

infocourier-iron_text_3.jpg

Reasons for a deficiency

  • The pH in the root environment is too high (pH> 6,5).
  • The root environment contains a lot of zinc and/or manganese.
  • The concentration of iron is too low in the root environment.
  • The root temperature is low.
  • The root medium is too wet, causing the oxygen supply in the roots to stagnate.
  • The root system functions inefficiently due to damaged, infected or dead roots.
  • There is too much light on the nutrition tank; light promotes the growth of algae. Algae also use up the iron and break down iron chelates.

Solutions for a deficiency

  • Lower the pH.
  • Iron chelates can be added to the substrate.
  • Drainage can be improved, or the ground temperature can be increased.
  • A leaf nutrient with iron chelates can possibly be applied. If a good fertilizer is used with hydroponic growing, an iron deficiency is almost out of the question.
  • The best thing you can do is to spray the plants with a watery solution of EDDHA (max. 0.4 grams per gallon) or EDTA chelates (max. 2 grams per gallon).

Related Images:

Potassium deficiency guide

Potassium deficiency guide

It is necessary for all activities having to do with water transport and the opening and closing of the stomata.

Potassium takes care of the strength and the quality of the plant and controls countless other processes such as the carbohydrate system. 

About potassium in short

What is it and what does it do?
Potassium takes care of the strength and the quality of the plant.
Controls countless other processes such as the carbohydrate system.
What can you see?
Dead edges on the leaves.
What can you do?
In case the EC in the substrate or potting mix is high, you can rinse it with clean water.
Add potassium yourself.

infocourier-potas_text_4.jpg

Symptoms of a deficiency

Evaporation is reduced if there is a shortage of potassium. A consequence is that the temperature in the leaves will increase and the cells will burn. This occurs mostly on the edges of the leaves, where normally, evaporation is highest.

Development of a deficiency

  • Tips of the younger leaves show gray edges.
  • Leaves turn yellow from the edge in the direction of the veins and rusty colored dead spots appear in the leaves.
  • The tips of the leaves curl up radically and whole sections of the leaves begin to rot. The leaves keep on curling and ultimately fall off.
  • An extreme shortage produces meagre, unhealthy-looking plants with strongly reduced flowering.

infocourier-potas_text_3.jpg

 

Reasons for a deficiency

  • Too little, or the wrong type of fertilizer.
  • Growing in potassium-fixed potting mixes.
  • An excess of sodium (kitchen salt) in the root environment, as sodium slows down potassium intake.

Solutions for a deficiency

  • In case the EC in the substrate or potting mix is high, you can rinse with water.
  • Add potassium yourself, either in inorganic form: Dissolve 5 – 10 grams of potassium nitrate in 2.5 gallons of water. In acidic potting mixes, you can add potassium bicarbonate or potassium hydroxide (5ml in 2.5 gallons of water).
  • Add potassium in organic form: Add a water solution of wood ash, chicken manure or slurry of manure (be careful not to burn the roots). Extracts of the grape family also contain a lot of potassium.

For your information

  • Potassium is absorbed quickly and easily by the plant. In a hydroponic system results get visible within several days. Potassium supplementation by leaf fertilization is not recommended.
  • Too much potassium will cause salt damage, calcium and magnesium deficiencies and acidification of the root environment!

Related Images:

Manganese deficiency guide

Manganese deficiency guide

Manganese is an essential trace element for all plants. Manganese acts as an activator for different enzyme reactions in the plant, for example in water-splitting during photosynthesis, the synthesis of amino acids and proteins and the build up of plant cell membranes and chloroplasts.

Manganese is generally taken up via the roots. Once inside the plant it is difficult to transport but not as difficult as calcium or iron for example. Silicon and molybdenum improve the transport possibilities for manganese in the plant.

About manganese in short

What is it and what does it do?
The metal manganese is an essential trace nutrient and acts as an activator for different enzyme reactions in the plant.
What can you see?
Yellow stripes appear between the leaf’s side veins.
What can you do?
Using products that contain trace elements (Tracemix).

Manganese deficiency guide

Symptoms of a deficiency

A manganese deficiency causes different physiological changes in the plant due to a decrease in protein production. Among others, this causes less nitrate to be fixed in the plant, which can lead to dangerously high levels of nitrate. Additionally, a lot of chemical reactions in plant cells slow down which may result in a build up of organic acids.

Development of a deficiency

The progression in chronological order:

  • Yellow stripes appear between the leaf’s side veins on the larger leaves at the top of the plant.
  • The yellowing between the side veins spreads further over the leaf and small, yellow/brown necrotic spots can form.
  • The final result is a small plant (-10%) with minimum fruit/flower production.

Manganese deficiency guide

Reasons for a deficiency

In practice, the most common reason is that the pH in the substrate is too high. Like iron, manganese is easily dissolved at a low pH value in the substrate. If the pH is too low, a risk of excess manganese may occur. At high pH values manganese precipitates into manganese oxide (MnO2) which cannot be taken up by the plant which can cause deficiency.

Solutions to resolve a deficiency

  • Check the medium’s pH when the first symptoms are noticed. High pH values mean that there is less manganese available for the plant. By lowering the pH of the nutrition (pH minus (down)) the medium’s pH can be lowered to 5.0 – 5.5.
  • Low substrate temperature can be the cause of reduced manganese absorption. If a deficiency is noticed, check that the substrate temperature is sufficiently high (68 – 77 oC) during the day.
  • Using products that contain trace elements may also help. A manganese deficiency is usually not a problem on its own. To facilitate manganese transportation in the plant, molybdenum is needed. Thus, the problem may well be a molybdenum deficiency. High levels of phosphorus may also result in a reduced availability of trace elements like zinc, copper and (of course) manganese. CANNA advises to use a mix of all needed trace elements. Trace elements can be given to the plant both in the feeding and by spraying the leaves. Spray the plant at the end of the day and spray daily with water after spraying to prevent burning.

Excess Manganese!

When there are high concentrations, manganese precipitates into manganese oxide (MnO2 or black manganese) which causes yellow-brown spots on the leaves. Initially, small spots will appear along the main and side veins of the leaf, following this, the spots will spread out from the veins. Excess manganese can be a result of a low pH in the substrate.

Related Images:

Plant hormones

articles-planthormones_banner_1

Plant hormones

Hormones are organic molecules that can influence the physiology and development of plants and animals even at low concentrations. Hormones play an important role in the growth and flowering of the plant and many other things. This article briefly explains how plant hormones work in plants and how hormones ensure that plants flower.

Hormones are produced by and transported throughout the entire plant. Simply put, they are signals, chemical signals, that can be sent and received throughout the entire plant. A leaf can and will transmit a signal to the end of the stem telling it to form flowers for example. The most well-known plant hormones are auxin, gibberellin, cytokinin, ethylene and abscisin (abscisic acid). In addition, it has been demonstrated that brassino-steriods, salicylates and jasmonates also function in a similar way to hormones. Hormones can also occur bonded to sugars or amino acids. In this form they are inactive and provide storage. The hormones can be released again and become active under various conditions such as the influence of gravity or light for example.

Auxin


articles-planthormones_text_1In the 1880’s Charles Darwin and his son Francis started experiments that finally confirmed the existence of plant hormones. They experimented with oats and the influence of light on the direction of growth. Auxin was the plant hormone whose processes were demonstrated during these experiments. Auxin is produced in the plant’s growing points both above the ground and in the roots. Auxin influences water absorption, cell division and cell stretching (it softens cell walls) among other things. Because auxin promotes the formation of roots on stems it is used in a variety of forms in rooting hormones.

Experiments carried out by CANNA have shown that the effect of administering auxin depends very much on the concentration and method of application used for each plant type. With weak concentrations flower formation is stimulated slightly and ripening takes longer. With high concentrations there is an inhibiting effect on growth accompanied by deformities and tumour-like symptoms.Auxin that is produced in the tops of plants is capable of inhibiting the development of side shoots. This symptom is known as apical dominance. Removing the main tip stops the inhibiting effect and side shoots then develop which will eventually result in a broader plant. Where crop spacing allows only a few plants per square meter it is worthwhile removing the main tip as this makes it possible to use the light more efficiently. It’s also necessary to remove the tips regularly to achieve a good stock plant for propagation so that it will grow many more side shoots.

Gibberellin


articles-planthormones_text_2Gibberellin was first isolated in 1935 in Japan by Yabuta. The gibberellin was acquired from a fungus that had been the cause of reduced productivity for Japanese rice farmers for centuries. The gibberellin initially gave better growth but later in the season it caused sterile fruits. Generally speaking, gibberellins work as growth accelerators because of cell stretching and cell division. They ensure that seeds germinate and flowers form in plants that need long days. Gibberellin is often used in the cultivation of fruit to help unfertilized pears and apples develop fully.

Administering gibberellin to short-day plants, or autumn flowerers, as they are also known, very quickly gives clear effects even at low concentrations. Plants become light green in colour and stems split open because of the fast growth (photo 1). The plant’s speed of growth can reach 10 cm per day! Administering gibberellin during the vegetative phase causes plants to start flowering more slowly. Gibberellin is for short-day plants as testosterone is for people. It stimulates the formation of typically male organs and longer plants; longer internodes and male flowers in dioecious plants. When the pollen from these flowers is used to fertilize female flowers, seeds are created that always produce female plants.

articles-planthormones_text_6

Photo 1: Stem that has torn open because of growing too fast after gibberellin was administered.

Certain environmental influences can also cause the production of extra gibberellin. Plants will make more gibberellin in poorly lighted conditions, which causes them to become long and look lanky. Another effect is seen when the lamp is too close to the plant. Buds that are flowering can start to shoot again if the lamp is too close. This will cause the tops to become long and thin. To prevent this, the distance from the plant to the lamp during flower formation must be at least 50 cm for a 600W lamp.

Cytokinin


articles-planthormones_text_3Cytokinin activity was first demonstrated in 1913. 30 years later it was discovered that a natural substance present in coconut milk was capable of helping plant cells multiply. Cytokinin was the responsible hormone for this. Cytokinin is known as the hormone responsible for cell division. It stimulates the metabolism and the formation of flowers on side shoots and as such is a counterpart to auxin. The cytokinin concentration is highest in young organs (e.g. seeds, fruits, young leaves and root tips). High concentrations in an organ or tissue will stimulate the transport of sugars to those tissues or organs.

Administering cytokinin leads to greater leaf surface area and faster flower formation. However, the time that flowering finishes is comparable to untreated plants. Cytokinin can be seen as a counterpart to gibberellin in this regard because it stimulates the formation of female flowers on male plants.

Ethylene


articles-planthormones_text_5The practical use of ethylene comes from the time of Old Egypt when figs were scored to make them ripen faster. In 1934 it was discovered that plants produce ethylene themselves, which enables them to regulate fruit ripening. Ethylene is the least complex plant hormone from the molecular point of view and is produced by all organs. It is a gaseous hormone which is transported via the spaces between plant cells. It is responsible for fruit ripening, inhibition of growth, and leaf abscission (shedding). Ethylene has a stimulating effect on flower formation with certain types of plants (i.e. pineapples, mangoes and lychees). Administering ethylene results in smaller plants and flowering finishes a lot quicker. The flowers ripen too quickly and consequently remain small.

Because plants can be very sensitive to ethylene, the concentration is expressed in parts per billion parts of air (ppb). Concentrations of just 10 ppb can cause abnormalities in tomatoes. In situations where ripening flowers come in contact with young plants there is the risk of accelerated ripening in the young plants. The ethylene that is produced can reach the young plants via the air. Ventilating occasionally (once per day) will remove the ethylene that has formed. High concentrations cause leaves to turn yellow immediately.

Ethylene can also accumulate around roots if they are wet for too long. This can lead to leaf chlorosis, stem thickening, leaves bending towards the stem and greater susceptibility to diseases.

In stress situations, for example when there is disease present or damage to the plant, the plant produces more ethylene, which causes it to remain smaller and finish flowering faster. Mechanical stress such as air movement can also cause the plants to produce extra ethylene, which will result in smaller plants with thick, sturdier stems. When the fans are too close to the plants there will be too much stress and this will adversely affect the yield.

Abscisin


articles-planthormones_text_4Abscisin was first isolated in 1963 and has the Latin word abscissio (breaking off) to thank for its name. This is because people thought that abscisin was responsible for the breaking off (shedding) of leaves and fruits, however, it was later shown that ethylene plays a much more direct role in this.

Abscisin is produced in the chloroplasts of older leaves and has both inhibiting (growth) and stimulating (protein storage) characteristics. When there is a large supply of abscisin to the growing points of the stem and roots, cell division stops and the plant enters a rest period.

Abscisin is an important hormone as far as stress situations are concerned. It is responsible for closing the stomata when the plant is under water stress due to continuing high temperatures, low atmospheric humidity or an EC in the feeding medium that is too high.

Flower formation in short-day plants

Even though a lot of research has already been done into the changeover from growth to flowering in plants, it still hasn’t been explained how this mechanism works exactly. In the case of short-day plants, the formation and development of flowers depends on the precise length of the night. Short-day plants will flower when the night-time period is longer than 12 hours. It is important that it is really dark during this period because the plant is only capable of measuring the period of darkness and not the period of light. Almost any light level during the dark phase will affect the cycle. This is measured in the leaves, which then send a signal to the furthermost ends of the branches instructing them to form flowers. The hormone that gives this signal is called florigen. So it is theoretically possible, for example, to use material from flowering plants to stimulate other plants to flower under 18 hours of light.

Different hormones play an important role in the phase following the first setting of the flower buds. So cytokinin and auxin play an important role in the further formation and growth of the flowers. Abscisin and ethylene are important during ripening.

Using hormone preparations

If you want to experiment with plant hormone preparations, pay close attention to how, when and how much hormone you use. The final effect depends on many factors such as the time of administering (which phase, time of the day), the route chosen for administering (leaf or roots) and the concentration. The final effect of administering hormones can depend very much on the concentration used. For instance: weak concentrations of Auxin stimulate root growth while strong concentrations cause extra ethylene production, which, in turn, causes the plant to finish flowering faster.

Related Images:

Hard water and soft water

All over the world, questions pour in as to the distinctions between hard water and soft water and how these differences affect how and what plants are fed.

By Geary Coogler, B.Sc. Horticulture

The U.S. department of the interior and the U.S. Geological Survey (USGS) define 60 mg/l (60 ppm) or less of certain ions as soft water. Water with over 120 mg/l (120 ppm) is considered hard, and water in between is moderately hard. Other countries and agencies hold their own distinctions. (See Table 1) Strictly speaking, it is the concentration of dissolved positive multivalent metallic ions with a charge of +2 or +3, typically Calcium and Magnesium. This effect can be heightened by the presence of dissolved in water, can and will react with other elements added to the water, or with anything it comes into contact with. Hard Water is an issue for cleaning, for equipment, and increases the chemical activity of the water especially where pH is concerned; it is often considered healthier. Typically this comes from ground water that has been exposed for longer periods to mineral bearing rock. Well water is a prime example.

Soft Water on the other hand, allows soap to foam up and work better, has less issues for equipment, and provides more of a blank slate in chemical reactions; studies have shown a correlation between soft water and health issues including cardiac disease. Typically this comes through surface water, rivers, streams, and lakes that have not been exposed to mineral bearing rock formations for long periods. It can also be composed of treated water where most of all ions have been removed or replaced by single valance atoms such as Sodium from water softening equipment.

Table 1.

Recommended upper limits of chemical factors in irrigation water for greenhouse crop production (Based on 1 and 2, see bibliography)

articles-hardwatersoftwater_text_2

The values can vary by EC meter. Here we have used the Truncheon Meter to calculate the values.

Problematic ions

Bad Water is bad water, whether because it has a high salt content or has undesired chemicals in it. It can be found anywhere especially in industrial areas, intense agricultural regions, and close to bodies of salt water. This has no bearing on water hardness.

Do not confuse ion or salt concentration with hardness or softness of water. Hardness is a function of multivalent ions like Ca2+ and Mg2+ not monovalent ions like Na+ or Cl+. Monovalent ions also show up in the Total Dissolved Solids (TDS) of a solution, so it is possible to have a TDS of 450 mg/L (1 ppm = 1 mg/L), derived from adding table salt to distilled water, but have soft water. There is no direct correlation between TDS or EC (electrical conductivity) and water hardness unless it is known with certainty that all EC derives exclusively from Ca, Mg or other positive multivalent metallic ions. Sugar water has EC but no hardness. Water softeners work this way by displacing the problem ions Calcium and Magnesium with Sodium ions. The EC stays the same or increases but the water goes from hard to soft; not a good thing for plants.

For us, the big question is “How does this affect the nutrients for plants?” One of the biggest effects for growing systems using hard water is the potential for insoluble deposits of Calcium or Magnesium carbonates. This combining of these ions is an endothermic reaction meaning that as heat is supplied to the solution, the process gets faster. The process of pumping water from a reservoir, through a pump, through smaller pipes, onto a table top and through a root system imparts increasing amounts of heat to the solution so the reaction is natural and persistent.

articles-hardwatersoftwater_text_1

The EC value cannot tell you about the quality of your water. Sometimes hard water with an EC of 0.5 may still be high quality water for growing, while other water with the same EC could be bad or even very harmful to your plants because it contains the wrong salts and chemicals.

Reduced flows

At this heat enters the system, the combining of these elements increases, resulting in the deposition of insoluble materials on the inside of pumps, pipes, tubes and medium of the growing system. Ultimately this leads to reduced flows, blocked emitters, burnt out pumps and so on.

The effect on the chemical profile of the nutrient package can also be affected through various antagonistic relationships between individual elements and the overall affect on pH. The harder the water the more Calcium and Magnesium is being applied. The higher these elements get in relation to some other elements like Potassium and Phosphorus, the less available these elements become, effectively locking out these elements. These positive Ions will bring the pH of the solution up, and when hardness is also affected by carbonate levels, the pH effect will continue into the medium to which it is applied. The harder the water, the more acid is required to lower the pH.

There are a couple of commercial solutions to various situations of concentration and hardness. The first is Water Softening. Water softening involves flooding the water with a monovalent ion, typically Sodium, which drives out the Calcium and lowers the hardness of the water. This is great for clothes washing and baths but not so great for consumption by plants and humans, especially where the water is very hard.

The next is Reverse Osmosis (RO), a process where tap water is forced through a series of membranes with progressively smaller pores that block molecules and atoms of a certain size. This filters out the Calcium and other larger elements effectively lowering the water hardness. It also strips out most of all the elements including harmful molecules, Sodium ions, and most other ions thus effectively lowering overall Total Dissolved Solids and EC. It is also expensive to install and maintain and really not always necessary, at least to use pure Reverse Osmosis water.

Water sample

Decent nutrient companies should take the concerns of hard or soft water into account with the design of their products. Different lines have different needs in this area. Most of these differences are influenced by the medium the product is applied to. Potting mixes have a greater buffering capacity, the ability to hold elements, and should not be recirculated. Recirculating adds more heat to the system and allows deposits to form more readily. Potting mixes have natural buffers that hold pH changes down. The difference in content should be adjusted through the correct ratio of nutrients found in a fertilizer specially developed for potting mixes.

Only soft water is recommended for recirculating systems on inert mediums, so pure RO is acceptable in this system. Recirculating systems have to be able to adjust to, not only the hardness of the water, but also to the additional elements applied in the tap water over and above what is added or needed in the nutrient added. Controlling salt composition is critical because this also affects pH and pH is critical in signaling a plant’s flower response (in addition to photoperiod change). The best would be to use a nutrient which is designed to work with tap water EC values no greater than 0.3 – 0.4 mS/ cm while providing some buffering for pH control in the system (for example CANNA AQUA).

Another situation of current growing systems is the Run-To-Waste system where tank mixed nutrients are applied to a plant and the excess is allowed to drain away and not be re-captured. In this system, it is important to not only adjust the pH once it is mixed, but to maintain that pH across time as the product sits in a prepared tank. This keeps pH swings down while keeping insoluble compounds from forming. Also, there are less Calcium and Magnesium ions available in soft water and the amount needs to be augmented or replaced to achieve the correct disposition of ions. To make growing easier while allowing you to worry less about nutrient composition you should use a nutrient brand that has both a soft water and a hard water version (for RTW) to choose from (like CANNA SUBSTRA). How to know when to use the Hard Water version or the Soft Water version? Simple, see the above explanation and run a water sample.

So, what is gained with this knowledge: the appreciation of the fact that there are many aspects affecting water quality. Not only is the total amount of dissolved ions an issue, but also the composition of these elements and the effect they have on added nutrient packages and the post chemical reactions that can and will occur. Ultimately, it all affects the plant. Nutrients have to be designed and used based on the conditions of the water that the grower intends to utilize as source water. In the end, it is also about correctly designed nutrient packages that allow for both the plant’s nutrient requirements and the long term effect on plant development, and the effect of the medium on composition, storage, and reactivity. Testing is knowing, and knowing is growing; how much do you know?

Bibliography

  1. Baily, D, T Bilderback, and D Bir. “Water considerations for container production of plants.” North Carolina State University Horticulture Information Leaflet 557. 1996.
  2. Kessler Jr., J. R. “Water Quality Management for Greenhouse Production.” Alabama Cooperative Extension Service Publication ANR-1158. Alabama A&M and Auburn University, 2005.

Related Images:

Water types, quality and treatments

Good quality water is the foundation of all soilless growing, however not everyone is blessed with a suitable water source for hydroponics. Even crystal clear water may contain a range of minerals, water treatment chemicals and pathogens which can damage plants and slow growth. Luckily, water is relatively easy to treat and some growers choose to install small reverse osmosis (RO) units just to ensure their water is always top quality.

By Lynette Morgan, Suntec

 

Water types and potential problems

 

Water can be sourced from wells, or collected from roofs, streams, rivers or dams, but many growers are reliant on municipal or city water supplies and while these are usually safe to drink, they can sometimes pose problems for plant growth. The main quality problems encountered with different water types are as follows.

 

articles-watertypesqualitytreatments_text_1

Some water sources can carry plant disease pathogens such as Pythium which cause root browning and death if they take hold of a weakened plant.

 

Ground water (streams, rivers and dams)

 

Ground water sourced from rivers, streams or stored in dams/reservoirs typically poses the most problems for soilless growers, particularly if the water is not treated before use. Water which is continually exposed to air and soil becomes contaminated with organic matter, minerals leach from the surrounding area, and pathogen spore loading can be high. Many greenhouse operations use open air storage dams as an economic method of storing holding large volumes of water collected from greenhouse roofs or other surfaces, however this water is typically filtered and treated before use. River or stream water often has inconsistent water quality as operations being carried out up stream affect composition of the water and rainfall and flow rates also fluctuate throughout the year.

 

Well water

 

Water from wells in different locations around the world can vary considerably in quality. Very deep wells passing through certain soil layers will give an almost `filtered water’ although some minerals are always likely to be present in ground water. Some wells, particularly older types, or those which have been poorly maintained and are shallow can present problems with contamination from pathogens, nematodes and agrichemicals leached through the upper soil layers into the well water2. Well water may be `hard’ and contain levels of dissolved minerals such as calcium and magnesium and other elements depending on the soil type surrounding the well.

 

High levels of sodium and trace elements are the most problematic for hydroponic growers, levels in excess of 2000ppm sodium have been found in inland well waters in some arid regions, although most well waters don’t pose such an extreme problem. Sodium is not taken up by plants to any large extent, hence accumulates in recirculating systems, displacing other elements. Trace elements in ground water, such as copper, boron and zinc may sometimes occur at high levels. Soilless growers utilizing well water are advised to have a complete analysis carried out on their water source to determine if any potential problems exist.

 

Rain water

 

Recirculating systems such as NFT can compound some water problems and unwanted elements such as sodium can accumulate over time.

 

Rain water is generally low in minerals, however acid rain from industrial areas, sodium from coastal sites and high pathogen spore loads from agricultural areas do still occur3. Much of this contamination has been found to happen when rain water falls on roof surfaces and picks up the organic matter, dust and pollutants which naturally collect there. In fact, numerous studies have shown that due to contamination following contact with catchments surfaces, stored rainwater often fails to meet the WHO guideline standards for drinking water especially with respect to microbial contamination3. In the USA, rainwater collected within 48km of urban centres is not recommended for drinking due to atmospheric pollution3. While drinking water standards don’t necessarily apply to hydroponic growing, the fact that high levels of microbial contamination often occur in stored rainwater means that common plant pathogen spores are also likely to be present. Rain water is best collected from clean surfaces with a ‘first flush’ device installed. which allows the first few minutes of rainfall to be discharged from the roof before any is collected for use.

 

Rain water may also contain traces of zinc and lead5 from galvanized roof surfaces or where lead flashings and paint may have been used4 and is a greater problem when the pH of the rain water is low. Generally, rain water collected from greenhouse roofs is free of zinc and lead problems.

 

Hard or soft water

 

‘Hard’ and ‘soft’ are terms used to describe the quality of many water sources. Hard water has a high mineral content, usually originating from magnesium, calcium carbonate, bicarbonate or calcium sulfate, which can cause hard, white lime scale to form on surfaces and growing equipment. Hard water may also have a high alkalinity and a high pH, meaning that considerably more acid is required to lower the pH in the hydroponic system to ideal levels. While hard water sources do contain useful minerals (Ca and Mg), these can upset the balance of the nutrient solution and make other ions less available for plant uptake. Smaller growers can counteract this by making use of one of the many ‘hard water’ nutrient products on the market. Soft water, by comparison, is a low mineral water source. Often rainwater is ‘soft’, while municipal water sources across the country range from very hard to soft, depending on where the individual city water supply is taken from.

 

Other water types

 

Some growers prefer to start with water which has been pre-treated to remove any chemicals, pathogens and other contaminates. RO (reverse osmosis), distilled water, filtered and bottled water are all options for small growing systems and those concerned with water quality.

City and Municipal water quality

Many city water sources are perfectly acceptable for soilless growers and hydroponic systems and can be used with no adjustment or treatment. However, the water treatment options used by city water suppliers change over time and with advancing technology. In the past, the main concern was chlorine in city water supplies. Chlorine is a disinfection agent which destroys bacteria and human pathogens, and residual chlorine can be detected by smell in a water source. High levels of chlorine can be toxic to sensitive plants, however chlorine dissipates rapidly into the air and can easily be removed by aerating the water or just letting the water sit or age for a few days before use.


Solution culture systems don’t have the buffering capacity of those using a soilless substrate so are more prone to problems with water quality.

 

While the chlorination of water supplies was easy to deal with, nowadays, city water treatment plants are moving more towards the use of other methods of treating drinking water. It has been found that some human pathogens were resistant to the action of chlorine, and consequently drinking water regulations were changed and alternative disinfection methods are being used more frequently. These days, water may still be chlorinated, but an increasing number of city water supplies have switched to use of ozone, UV light, chloramines, and chlorine dioxide. While many of these methods present no problem for hydroponics and soilless growers, the use of chloramines and other chemicals by many city water treatment plants can pose a problem for plants where high levels are regularly dosed into water supplies.

 

Chloramines are much more persistent than chlorine and take a lot longer to dissipate from treated water, hence they can build up in hydroponic systems and cause plant damage. Damage to plants caused by chloramines in city water supplies is also very difficult to diagnose as it looks similar to the damage caused by many root rot pathogens and growers are often unaware of what is causing the problem. Some plants are also naturally much more sensitive to chloramines than others, so determining levels of toxicity has also been difficult. One hydroponic research study has estimated that the critical level of chloramines at which lettuce plant growth was significantly inhibited was 0.18 mg Cl/g root fresh weight1.

 

Hydroponic growers who have concerns about the use of chloramines in their city water supply can treat the water with specifically designed activated carbon filters or by using a dechloraminating chemical or water conditioners which are sold by the aquarium trade to treat the water for fish tanks. The chloramine carbon filters must be of the correct type that has a high quality granular activated carbon that allows for the long contact time required for chloramine removal. Growing systems that utilize substrates such as coco are a safer option than soilless culture or recirculating systems where water treatment chemicals are suspected to be a problem. Natural substrates provide a ‘buffering’ capacity in a similar way to soil and can deactivate some of the treatment chemicals contained in the water supply.

 

Other common water quality problems include the use of ‘water softener’ chemical either by city treatment plants, or in the home – these are often sodium salts which result in problematic sodium levels in the hydroponic nutrient. If sodium levels are too high, either through use of water softener chemicals or naturally occurring in the water supply, RO is the best option for sodium sensitive crops.

 

Tips and tricks for growers

 

How do you know if you have a water quality problem?

 

It can be very difficult to determine if a water quality issue is responsible for any plant growth problems which might be occurring. Many diseases and errors with nutrient management or incorrect environmental conditions will produce symptoms very similar to common water quality problems. Ideally, obtaining a full water analysis is useful for most growers, however detecting other issues such as chemical or microbial contamination is more complex. The simplest method of determining if water quality is the cause of growth problems is to run a seedling trial – growing sensitive seedlings such as lettuce using RO or distilled water as the ‘control’ or comparison will usually show up any problems originating from the water supply. Keeping all other factors such as nutrients, temperature and light the same between the plants in the different water samples and using a solution culture system will give the most accurate test. Comparing growth in the pure water to the suspected water sample will reveal any problems (if growth problems appear in both seedling treatment water samples, then something other than water quality is to blame). Water quality problems may show as stunted roots which don’t expand downwards, short, brown roots, yellowing of the new leaves, stunted foliage growth, sunken brown spots on the foliage, leaf burn and even plant death.

 

What to do about suspected microbial contamination

 

Zoosporic pathogenic fungi such as Pythium and bacteria can survive in and be distributed by water6. Water sources which may not have been treated and may contain disease pathogens such as ground, river or steam water can be relatively easily cleaned up by the grower before use. The safest options are UV, ozone and slow sand filtration as these won’t leave chemical residues which may harm young, sensitive root systems. Small UV treatment and filtration systems such as those used in fish ponds and aquariums are suitable for treating water for hydroponic use and will kill plant pathogens and algae. However these are best used for treating water only, not nutrient solutions as UV can make some nutrients unavailable for plant uptake.

 

Even clean, clear water may contain a range of minerals, water treatment chemical and pathogens which can damage plant growth.

 

What to do about other contaminates and treatment chemicals

 

Activated charcoal (slow) filters are still one of the more reliable and inexpensive ways of removing suspected contaminates from a water supply. Herbicides, pesticides, chlorine, chloramines, and other chemicals are reduced to low levels by suitable activated charcoal filters and these can be used by small and large growers alike. If chlorine alone is a problem, aerating the water for 48 hours by using a small air pump will dissipate this chemical. Using substrate-based systems incorporating a media such as coco fibre will give a greater degree of protection and ‘buffering’ capacity where chemical contaminates are suspected.

 


Aeration of chlorinated water supplies will cause the chlorine to dissipate, making the water safe to use in hydroponic systems.

 

What to do about excess minerals

 

Often it is possible to dilute a water supply which may have a slight excess in certain minerals, particularly trace elements, with a higher quality water source, however for water sources with a high natural salinity reverse osmosis or distillation are the only methods of demineralization. Some crops such as tomatoes are far more tolerant of excess minerals and salinity than others such as lettuce, so this factor should be taken into account.

 

What to do about ‘hard’ water with a high pH

 

Hard water is best treated with acid to lower the pH to 6.5 before adding any nutrients to make up the nutrient solution or before using the water to top up a nutrient reservoir. This will reduce the total amount of acid required in the system to keep pH under control. Hard water also contains minerals such as calcium and magnesium, so using a specific ‘hard water’ nutrient formulation or product in recirculating systems is advised, since these will keep nutrient ratios more in balance and also assist with keeping pH in check.

Related Images: